Journal of Organometallic Chemistry, 271 (1984) 55-67 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DIRECT SPECTROSCOPIC STUDY OF SILAOLEFINS. VIBRATIONAL FREQUENCIES OF $R_2Si=CD_2$ ($R = CH_3$, CD_3) IN AN ARGON MATRIX *

A.K. MALTSEV, V.N. KHABASHESKU and O.M. NEFEDOV

Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Leninsky Prospect 47, 117913 Moscow (U.S.S.R.)

(Received February 21st, 1984)

Summary

As a continuation of studies on Si=C bond species, the silaethenes $(CH_3)_2Si=CD_2$ and $CD_3)_2Si=CD_2$ have been generated by vacuum pyrolysis of the corresponding silacyclobutanes with totally deuterated rings. The silaethenes are stabilized in argon matrices at 12 K and characterized by IR spectroscopy. The following vibrational bands of the silaethenes have been revealed by using warm-up experiments (to 40 K) and through variations of the pyrolysis conditions: $(CH_3)_2Si=CD_2$ 508.0, 535.3, 617.1, 776.5, 819.8, 895.1, 1117.5, 1251.0, 1259.5 cm⁻¹; $(CD_3)_2Si=CD_2$ 501.6, 651.2, 732.0, 866.5, 1002.5, 1005.0, 1028.0, 1112.0 cm⁻¹. A comparison of these values with computed vibrational frequencies of the silaethenes indicates that the $\nu(Si=C)$ vibration corresponds to two bands in the spectrum of each silaethene, namely 895.1 and 1117.5 cm⁻¹ for $(CH_3)_2Si=CD_2$, 866.5 and 1112.0 cm⁻¹ for $(CD_3)_2Si=CD_2$. Within each pair, the band with the higher wave number corresponds to a larger contribution by $\nu(Si=C)$.

Introduction

1,1-Dimethylsilaethene (I), the first silicon-carbon double bond species whose existence was established by a physical method [1], remains a focus of extensive studies [2,3]. Our recent analysis of earlier low-temperature spectroscopic experiments performed by several research teams [1,4-6] has revealed a reliable set of matrix IR bands [7] for the intermediates $(CH_3)_2Si=CH_2$ (I-d₀), $CH_3(CD_3)Si=CH_2$ (I-d₃) and $(CD_3)_2Si=CH_2$ (I-d₆). The isotopic shift of the IR bands on deuteration of the methyl groups was applied to assign the frequencies to the normal vibrations

^{*} Dedicated to Professor Makoto Kumada whose studies on the Si=C bond species and other organosilicon intermediates always encourage the authors.

of the molecule I, particularly for an assignment of the 1003.5 cm⁻¹ band to the v(Si=C) vibration in I- d_0 [4c,d]. The shifts were also used to determine the force field of silaethenes [4c,8].

However, these attributions and conclusions require some confirmatory experimental data on silaethenes with the deuterated methylene group at the double Si=C bond. Until recently [9] there had been no attempts to study such intermediates, although they are of great value [5b] to confirm unambiguously the assignments of the bands to normal vibrations and to examine the general force field [8] of silaethenes.

As a source of the silaethenes $(CH_3)_2Si=CD_2$ $(I-d_2)$ and $(CD_3)_2Si=CD_2$ $(I-d_8)$ used in this study, the previously unknown silacyclobutanes $CD_2CD_2CD_2Si(CH_3)_2$ $(II-d_6)$ and $CD_2CD_2CD_2Si(CD_3)_2$ $(II-d_{12})$ have been produced and then pyrolyzed in high vacuum. The pyrolysis products, frozen in an inert matrix, have been investigated by IR spectroscopy. A similar technique has been used successfully to detect the silaolefins I-d₀, I-d₃ and I-d₆ [1,4,7].

Experimental

The starting compounds, II- d_6 and II- d_{12} , have been obtained by the reaction of CH₃MgI or CD₃MgI, respectively, with perdeuterated 1,1-dichloro-1-silacyclobutane- d_6 (III) (Scheme 1).

SCHEME 1

To produce III the following steps are carried out. The first one is a synthesis of chloroallyl- d_5 (IV) by catalytic addition of chlorine to propene- d_6 to form 1,2-dichloropropane- d_6 (V), with subsequent thermolysis of V. Trichlorosilane- d_1 , obtained by a reaction of Si with DCl, was added to IV in the presence of the H₂PtCl₆ catalyst to produce γ -chloropropyltrichlorosilane- d_6 (VI). The latter compound was involved in cyclization with magnesium to give III. The synthesis of II- d_6 and II- d_{12} will be described in detail elsewhere [10].

The identity of the compounds II–VI was established with NMR (¹H, ¹³C), MS and IR spectroscopy. The isotopic purity of the samples of II- d_6 and II- d_{12} appeared

to be higher than 90% from the MS measurements. The mass spectra of $II-d_6$ and $II-d_{12}$ are presented in [10]. The elemental compositions of these silacyclobutanes are demonstrated by the exact masses of their molecular ions: $II-d_6$, m/z 106.1078 (found), 106.1084 (calculated for SiC₅H₆D₆); $II-d_{12}$, m/z 112.1453 (found), 112.1461 (calculated for SiC₅D₁₂).

The vacuum pyrolysis of the parent silacyclobutanes was accomplished using a flow quartz-tube reactor (diameter 5 mm, length 120 mm) at 700–1000 °C and pressures of $10^{-2}-10^{-4}$ Torr. The pyrolysis of II- d_6 and II- d_{12} , performed without the freezing of intermediates, gave the final products: C_2D_4 and 1,1,3,3-tetramethyl-1,3-disilacyclobutanes VII- d_4 and VII- d_{16} , which are cyclodimers of the silaethenes I- d_2 and I- d_8 , respectively. The cyclodimers were isolated and identified by their IR and MS spectra.

To freeze and detect the $I-d_2$ and $I-d_8$ intermediates by IR spectroscopy, the thermal reactor was coupled to an optical helium cryostat. The pyrolysis products were trapped with an excess of argon (1000-5000:1) at a CsI window cooled down to 12 K with a closed-cycle refrigerator. The IR spectra of the matrix-isolated products were recorded with a Hitachi-Perkin-Elmer-225 spectrophotometer.

Results and discussion

In this study, the IR spectra of the parent compounds $II-d_6$ and $II-d_{12}$, the cyclodimers VII- d_4 and VII- d_{16} , and the pyrolysis products of $II-d_6$ and $II-d_{12}$ have been registrated for the first time. The corresponding wave numbers are presented in Tables 1 and 2.

IR spectrum of $(CH_3)_2Si=CD_2$ $(I-d_2)$

In a matrix IR spectrum obtained from the pyrolysis of II- d_6 (840 °C, 2×10^{-3} Torr), we have found the absorptions of the parent compound II- d_6 and C_2D_4 , as well as a number of new bands (marked with an asterisk in Fig. 1b) at 508.0, 535.3, 617.1, 776.5, 819.8, 895.1, 1117.5, 1251.0, 1259.5 cm⁻¹, as well as a weak band at 2351 cm⁻¹. When the matrix was warmed to 40 K (Fig. 1c), the intensities of these ten bands decrease simultaneously, suggesting they belong to the same transient species. At the same time, one can indicate the growth of absorptions at 636.7, 651.7, 780.7, 858.0 cm⁻¹, all pertaining to the cyclodimer VII- d_4 , a matrix spectrum of which has been recorded in a separate experiment (Fig. 1d). Obviously, the accumulation of VII- d_4 on matrix warming results from the cyclodimerization of the intermediate I- d_2 . Hence, the above ten IR bands should be assigned to I- d_2 . An attribution of 2351 cm⁻¹ band is not definite.

11- <i>d</i> ₆	VII-d ₄	Pyrolysis products of II-d ₆		Assignment ^a
		At 840 ° C	At 930 ° C	
		508.0	508.0	I-d ₂ *
511.8		511.0		II-d ₆
	514.4			,
			518.6	C ₂ HD
		535.3		$I - d_2 \star$
			541.6	$C_2 D_2$
	551.0			~ -
590.8		591.5	590.6	$II-d_6$
610.0		610.0		II-d ₆
		617.1		$1 - d_2^{\star}$
	636.5	636.7		$VII-d_4$ *
	651.8	651.7		VII-d ₄
		662.0		CO ₂
679.6		680.0		11-d ₆
			683.3	C ₂ HD
686.2		686.8		II-d ₆
		705.0	705.0	II-d ₆
		719.3	719.0	C_2D_4
		736.0	736.2	C_2H_2
		749.6	749.0	
		776.5		$I-d_2$ *
	780.0	780.2		VII-d ₄
783.3		783.4		II-d ₆
		792.0		
802.6		803.2	803.4	$II-d_6$
809.3	809.5	809.0	809.3	$11 - d_6 + V 11 - d_4$
		819.8		1-d ₂
		832.8		?
		836.0		?
	847.0			
849.5		849.5	849.2	Π - d_6
	858.3	858.0	005.0	V11-d ₄
	015.0	895.1	895.0	$1-d_2$
028.0	915.0	915.4		$v_{11} a_4$
928.0	928.0	929.0	040 1	$11-a_6 + v_{11}-a_4$
		940.5	940.1	2
059.0		943.0	940.0	i II d
936.0		956.5		Π_{a}
972.1		972.1	977 3	Π_{-d}
970.2	1018.0	1018.0	711.5	VII-d.
	1010.0	1018.0		H_d
		1058.0	1057.0	[]-d.
		1067 5	1066.0	II-d.
		1074 5	1074.0	C ₂ D ₄
		1105.0	107 10	$U_2 = 4$
		1117.5	1117.0	I-d ₂ *
		1125.5		?
		1249.5	1249.5	11-d ₆

TABLE 1

THE VIBRATIONAL FREQUENCIES (cm $^{-1}$) OF THE SILACYCLOBUTANE II- d_6 , ITS PYROLY-SIS PRODUCTS AND 1,3-DISILACYCLOBUTANE VII- d_4 IN AN Ar MATRIX AT 12 K

TABLE 1 (continued)

11-d ₆	VII-d4	Pyrolysis products of II-d ₆		Assignment ^a
		At 840 ° C	At 930 ° C	
	1250.0			
		1251.1		$I-d_2$ *
	1252.5			L
		1254.5	1254.0	II-d ₆
	1256.0			°
		1259.5	1259.5	$I-d_2$ *
		1305.5	1305.0	CH₄
1323.0		1323.0		$II-d_6$
2072.0		2073.0		II-d ₆
2116.0				-
2140		2140		II-d ₆
2151		2151		II-d ₆
2175		2175		$II-d_6$
		2195	2195	$C_2 D_4$
		2205	2205	$C_2 D_4$
2214		2214		$II-d_6$
	2221			-
2233		2232		II-d ₆
2243	2243			Ū.
2257	2257			
		2339	2339	CO ₂
		2344	2344	$C_2 \tilde{D}_4$
		2351		$1 - d_2 * ?$
			2580	C ₂ HD
	2910			-
2911		2911		II-d ₆
	2931	2931		VII-d ₄
2968		2968		II-d ₆
	2970			
			3285	C_2H_2
			3299	C ₂ H ₂
			3337	C ₂ HD

" Bands not previously reported are marked *.

Further confirmation of such an interpretation has been provided by our experiments which involve variation of temperature/pressure in the pyrolysis zone or the argon to products ratio. Thus, a pressure increase, multiplying intermolecular collisions in the gas phase, favours cyclodimerization of $I-d_2$, giving VII- d_4 . Indeed, on a pressure rise from 10^{-3} to 2×10^{-1} Torr, the intensities of the above-mentioned ten bands are substantionally lower, whereas all the dimer absorptions grow in intensity (Fig. 2).

As to the influence of temperature, the silaethenes $I-d_0$, $I-d_3$ and $I-d_6$ are known to be unstable in vacuum at temperatures higher than 900 °C and to decompose to form methane, acetylene and ethylene [4a,d,e]. Matrix spectra obtained from pyrolysis at high temperatures usually contain only very weak bands of the Si=C intermediates [4d,e]. In full agreement with that pattern, the pyrolysis of II- d_6 at 920–930 °C and 5 × 10⁻³ Torr has led to intensive bands of C₂H₂, C₂HD, C₂D₂,

Fig. 1. (a) IR spectrum of II- d_6 in an Ar matrix at 12 K. (b) IR spectrum of the pyrolysis products of II- d_6 (840 ° C, 2×10^{-3} Torr) in an Ar matrix at 12 K. (c) The same after the matrix had been warmed up to 40 K and recooling to 12 K. (d) IR spectrum of the cyclodimer VII- d_4 in an Ar matrix at 12 K. Here and in Figs. 2-4 the species involved are: I- $d_2 \star$, II- $d_6 \bigcirc$, VII- $d_4 \diamondsuit$.

 CH_4 , C_2D_4 and to the complete absence of the ten bands assigned to I- d_2 in matrix spectra (Fig. 3).

The disappearance of the bands of $I-d_2$, and formation of its cyclodimer VII- d_4 , have occurred on the decrease from 5000:1 to 100:1 of an argon-to-products ratio and in the absence of argon. The IR spectrum of the pyrolysis products of II- d_6 , frozen at 12 K without an argon matrix, is shown in Fig. 4. Only the bands of the stable molecules II- d_6 , VII- d_4 and C₂D₄ can be seen in the spectrum. Any transient species, particularly I- d_2 , is not observed.

This result demonstrates once again (see earlier [1,4d]) the high reactivity of I at 10-12 K, and throws doubt upon possibility of low-temperature stabilization of simple silaolefines in the absence or in the deficiency of an inert medium [5c,6]. In

TABLE 2

II-d ₂	VII-d ₁₆	Pyrolysis products of II-d ₁₂		Assignment ^a
		At 840 ° C	At 970 ° C	
		501.3	/*************************************	I-d ₈ *
524.0		524.6		$II-d_{12}$
		541.9	542.0	$C_2 D_2$
		546.0		VII-d ₁₆
	589.2			
593.2		594.0		$II-d_{12}$
		613.8	613.1	
		657.2		$I-d_8$ *
662.8	663.6	663.3	663.0	CO ₂
	667.9	667.2		VII-d ₁₆
685.0		685.0		II-d ₁₂
693.3		693.6	693.0	II-d ₁₂
704.5	704.0	705.0	705.0	$II-d_{12}$
717.5				12
		719.0	719.0	$C_2 D_4$
		723.1	723.1	$C_2 D_4$
		732.0	731.8	I-d ₈
741.0		741.6	741.0	II-d ₁₂
746.0	746,5	746.3	746.3	$II - d_{12}^{12} + VII - d_{16}$
750.5		750.8	751.0	II-d ₁₂
764.3		764.8	764.0	II-d ₁₂
	774.5	775.0	774.5	VII-d ₁₆
	785.2			10
	796.0			
807.6	809.0	807.5	809.0	$II - d_{12} + VII - d_{16}$
	812.5	812.3	812.5	VII-d ₁₆
	841.0			10
		866.5		$I-d_8$ *
928.0		928.0		II-d ₁₂
957.6		958.0	957.0	$II - d_{12}^{12}$
971.0		971.6	971.0	II-d ₁₂
		987.0	987.0	II-d ₁₂
992.0	992.1	993.5	993.0	II-d ₁₂
998.1		998.3		II-d ₁₂
	1000.0		1000.0	$VII - d_{16} + II - d_{12} + CD_4$
		1002.5		$I - d_8 \star$
		1005.0		$I - d_8^*$
1011.0	1009.0	1010.0		$II - d_{12}$
1016.0	1015.0	1016.0		II-d ₁₂
		1028.0		$I - d_8^{\dagger \star}$
1035.0	1035.0	1035.0		II-d ₁₂
			1042.0	
1058.0		1058.5	1058.0	II-d ₁₂
1067.0		1067.5	1067.0	$II-d_{12}$
		1074.5	1074.5	$C_2 D_4$
		1080.0		II-d ₁₂
		1112.0		I-d ₈ ^{**}
		1119.0		?
1130.0		1130.0		II-d ₁₂

THE VIBRATIONAL FREQUENCIES (cm⁻¹) OF SILACYCLOBUTANE II- d_{12} , ITS PYROLYSIS PRODUCTS, AND 1,3-DISILACYCLOBUTANE VII- d_{16} IN AN Ar MATRIX AT 12 K

II-d ₂	VII-d ₁₆	Pyrolysis products of II-d ₁₂		Assignment ^a
		At 840 ° C	At 970 ° C	
2070		2070		III-d ₁₂
	2118.0			
2140		2140		II-d ₁₂
2155		2155		II-d ₁₂
2166		2166		II-d ₁₂
2176		2176		II-d ₁₂
		2195	2195	C_2D_4
		2205	2205	C_2D_4
2214		2214		II-d ₁₂
	2225		2225	VII-d ₁₆
2230		2230		$II-d_{12}$
			2260	CD ₄
2339		2339	2340	CO ₂
		2344	2344	C_2D_4
		2351		I-d ₈ *?
			2441	C ₂ D ₂

TABLE 2 (continued)

^a Bands not reported previously are marked *.

contrast, the data presented in this paper do show that the silaethene $I-d_2$ is stabilized in argon matrices and can be identified by IR spectroscopy.

IR spectrum of $(CD_3)_2Si=CD_2$ (I-d₈)

The silaethene I- d_8 has been obtained in a similar way by pyrolysis (840 °C, 10⁻³

Fig. 2. IR spectrum of the pyrolysis products of II- d_6 (750 °C, 2×10⁻¹ Torr) in an Ar matrix at 12 K.

Fig. 3. IR spectrum of the pyrolysis products of II- d_6 (930 °C, 2×10^{-3} Torr) in an Ar matrix at 12 K.

Torr) of the silacyclobutane II- d_{12} . Its spectrum is shown in Fig. 5b, the corresponding wave numbers of II- d_{12} and the pyrolysis products being presented in Table 2. The bands of the intermediate I- d_8 (501.3, 657.2, 732.0, 866.5, 1002.5, 1005.0, 1028.0 and 1112.0 cm⁻¹) are revealed by a technique of matrix warm-up from 12 to 40 K which resulted in cyclodimer, VII- d_{16} , formation (Fig. 5c). The matrix IR spectrum of VII- d_{16} shown in Fig. 5d has been registrated separately.

At higher pyrolysis pressure $(2 \times 10^{-1} \text{ Torr})$, only the strongest bands of I- d_8 can still be seen in spectra, but the cyclodimer VII- d_{16} , absorptions increase significantly (Fig. 6). The high temperature experiments (up to 970°C) have confirmed the

Fig. 4. IR spectrum of the pyrolysis products of II- d_6 (840 °C, 2×10⁻³ Torr) frozen without argon at 12 K.

Fig. 5. (a) IR spectrum of $II-d_{12}$ in an Ar matrix at 12 K. (b) IR spectrum of the pyrolysis products of $II-d_{12}$ (840 ° C, 2×10^{-3} Torr) in an Ar matrix at 12 K. (c) The same after the matrix had been warmed to 40 K and recooling to 12 K. (d) IR spectrum of the cyclodimer VII- d_{16} in an Ar matrix at 12 K. Here and in Figs. 6–8 the species involved are: $I-d_8 \star$, $II-d_{12} \bigcirc$, $VII-d_{16} \diamondsuit$.

thermal instability of $I-d_8$, being similar to the other isotopic modifications of the silaethene I. Under such conditions, the eight indicated bands were not observed in the spectrum (Fig. 7), while the bands belonging to C_2D_2 , C_2D_4 and CD_4 [11] appeared. As well as for $I-d_2$, we could not detect any band of $I-d_8$ in the spectra of the pyrolysis products frozen without argon at 12 or at about 70 K (Fig. 8).

Beside the spectral features of all the mentioned molecules, one observed some weak bands in spectra from the pyrolysis of II- d_6 or II- d_{12} , at 749.6, 832.8, 836.0, 940.5, 946.0, 1125 cm⁻¹ or at 613.8, 1042.0, 1119.0 cm⁻¹, respectively. These unassigned bands do not disappear on heating the matrix to 40 K. They are strong enough in the spectra obtained from the pyrolysis at 930–970°C, that is under

Fig. 6. IR spectrum of the pyrolysis products of II- d_{12} (750 °C, 2×10⁻¹ Torr) in an Ar matrix at 12 K.

conditions of the thermal instability of the silaethenes $I-d_2$ and $I-d_8$. Therefore, these bands can not belong to the transient species.

Vibrational frequency of the Si=C bond in the $I-d_2$ and $I-d_8$ molecules

The IR bands found in this study for the silaethenes with a deuterated methylene

Fig. 7. IR spectrum of the pyrolysis products of II- d_{12} (970 °C, 2×10^{-3} Torr) in an Ar matrix at 12 K.

Fig. 8. IR spectrum of the pyrolysis products of II- d_{12} (840 °C, 2×10^{-3} Torr) frozen without argon at 74 K.

group have been assigned to the normal vibrations of $I-d_2$ and $I-d_8$ molecules on the basis of force field calculations. The computed vibrational frequencies of $I-d_2$ and $I-d_8$ have been obtained using the silaethenes $I-d_0$, $I-d_3$, $I-d_6$ force field, particularly the force constant $k_{SI=C} = 5.6$ mdyn Å⁻¹ [4c].

In the vibrational assignment of the bands of $I-d_2$ and $I-d_8$, the stretching Si=C vibration attracts the greatest attention. For $I-d_2$, we could not trace any band in the spectral range 900-1100 cm⁻¹ that might be assigned to the Si=C vibration by analogy with $I-d_0$ (1003.5 cm⁻¹), $I-d_3$ (1016.5 cm⁻¹) and $I-d_6$ (1015.5 cm⁻¹). In the spectrum of $I-d_8$ there is a strong band at 1002.5 cm⁻¹ with a shoulder at 1005.0 cm⁻¹. However, intensive IR absorptions of the Si-methyl deformation vibration are known to shift from 1250-1260 cm⁻¹ to this quite narrow region near 1000 cm⁻¹ when CH₃ is replaced by a CD₃ group. For example, the shift is well documented for the spectra of silaethene $I-d_6$ [4c,d], $CH_2CH_2CH_2Si(CD_3)_2$ [12] and $(CH_3)_2Si(CD_3)_2$ [13]. Therefore, the 1002.5 and 1005.0 cm⁻¹ bands are assigned by us to these deformation modes of $I-d_8$.

On the other hand, both $I-d_2$ and $I-d_8$ spectra demonstrate a pair of strong bands within 140 cm⁻¹ from 1000 cm⁻¹ (895 and 1117 cm⁻¹ for $I-d_2$, 866 and 1112 cm⁻¹ for $I-d_8$) which are not observed in the spectra of $I-d_0$, $I-d_3$ and $I-d_6$. The positions of these bands may be explained by the vibrational mixing-splitting predicted for the simplest silaethene, $H_2Si=CD_2$, from the normal coordinate calculation [8]. This phenomenon originates in the mixing of the stretching Si=C vibration with the scissoring $\alpha(CD_2)$ vibration, which shifts from 1386 cm⁻¹ for H₂Si=CH₂ to ~ 1000 cm⁻¹ for H₂Si=CD₂ [8]. This results in a split into two vibrations, each one including.

 $\nu(Si=C)$ and $\alpha(CD_2)$. A larger contribution of $\nu(Si=C)$ to the vibration with the higher wavenumber may imply an assignment of the 1117 cm⁻¹ band for I-d₂ and the 1112 cm⁻¹ band for I-d₈ to the stretching Si=C vibration [14].

From the above standpoint the silaethenes with a deuterated methylene group differ markedly from the species $R_2Si=CH_2$ (I- d_0 , I- d_3 , I- d_6 [1,4,7], as well as the six-atom silaethenes $H_2Si=CH_2$, $D_2Si=CH_2$ and $Cl_2Si=CH_2$ [8,15]). The latter $R_2Si=CH_2$ type is defined by an IR band of the Si=C vibration near 1000 cm⁻¹, while the former one may be identified by two bands with a substantial contribution of $\nu(Si=C)$. Within some limits, it is possible to consider a $\nu(Si=C)$ frequency value increased by ~ 100 cm⁻¹ in $R_2Si=CD_2$ molecules.

Thus, the silaethenes $I-d_2$ and $I-d_8$, obtained and stabilized in a matrix in this study, are characterized by their IR spectra and some chemical properties. A confirmation of the high reactivity of I is its cyclodimerization at extremely low temperatures. At the same time, the silaethene I appears to be quite stable thermally up to 900 °C in the absence of intermolecular collisions in high vacuum.

References

- 1 A.K. Maltsev, V.N. Khabashesku and O.M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., (1976) 1193.
- 2 L.E. Gusel'nikov and N.S. Nametkin, Chem. Rev., 79 (1979) 529.
- 3 H.F. Schaefer, Acc. Chem. Res., 15 (1982) 283.
- 4 (a) A.K. Maltsev, V.N. Khabashesku and O.M. Nefedov, Dokl. Akad. Nauk SSSR, 233 (1977) 421; (b)
 A.K. Maltsev, V.N. Khabashesku and O.M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., (1979) 2152;
 (c) A.K. Maltsev, V.N. Khabashesku, E.G. Baskir and O.M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., (1980) 222; (d) O.M. Nefedov, A.K. Maltsev, V.N. Khabashesku and V.A. Korolev, J. Organomet. Chem., 201 (1980) 123.
- 5 (a) V.G. Avakyan, L.E. Gusel'nikov, V.V. Volkova, N.S. Nametkin, Dokl. Akad. Nauk SSSR, 254 (1980) 657; (b) L.E. Gusel'nikov, N.S. Nametkin, V.V. Volkova and V.G. Avakyan, J. Organomet. Chem., 201 (1980) 137.
- 6 N. Auner and J. Grobe, J. Organomet. Chem., 197 (1980) 13.
- 7 A.K. Maltsev, V.N. Khabashesku and O.M. Nefedov, J. Organomet. Chem., 226 (1982) 11.
- 8 E.G. Baskir, A.K. Maltsev and O.M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., (1983) 1314.
- 9 V.N. Khabashesku, E.G. Baskir, A.K. Maltsev and O.M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., (1983) 238.
- 10 V.N. Khabashesku, A.K. Maltsev and O.M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., in press.
- 11 L.M. Sverdlov, M.A. Kovner and E.P. Kraynov, Vibrational Spectra of Polyatomic Molecules (in Russian), Nauka, Moscow, 1970.
- 12 V.N. Khabashesku, A.K. Maltsev and O.M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., (1980) 837.
- 13 S. Biderman, H. Bürger, K. Hassler and F. Höfler, Monatsh. Chem., 111 (1980) 703.
- 14 A.K. Maltsev, E.G. Baskir, V.N. Khabashesku and O.M. Nefedov, J. Organomet. Chem., in press.
- 15 G. Maier, G. Mihm and H.P. Reisenauer, Angew. Chem. Int. Ed. Engl., 20 (1981) 597.